Experimental study of bedrock erosion by granular flows*

نویسندگان

  • Leslie Hsu
  • William E. Dietrich
  • Leonard S. Sklar
چکیده

[1] Field studies suggest that bedrock incision by granular flows may be the primary process cutting valleys in steep, unglaciated landscapes. An expression has been proposed for debris flow incision into bedrock which posits that erosion rate depends on stresses due to granular interactions at the snout of debris flows. Here, we explore this idea by conducting laboratory experiments to test the hypothesis that bedrock erosion is related to grain collisional stresses which scale with shear rate and particle size. We placed granular material in a 56-cm-diameter rotating drum to explore the relationship between erosion of a synthetic bedrock sample and variables such as grain size, shear rate, water content, and bed strength. Grain collisional stresses are estimated as the inertial stress using the product of the squares of particle size and vertical shear rate. Our uniform granular material consisted of 1-mm sand and quartzite river gravel with means of 4, 6, or 10 mm. In 67 experimental runs, the eroded depth of the bed sample varied with inertial stresses in the granular flow to a power less than 1.0 and inversely with the bed strength. The flows tended to slip on smooth boundaries, resulting in higher erosion rates than no-slip cases. We found that lateral wall resistance generated shear across the channel, producing two cells whose widths depended on wall roughness. While the hypothesized inertial stress dependency is supported with these data, wear mechanics needs to account for grain dynamics specifically at the snout and possibly to include lateral shear effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

Evaluating the controls of shear stress, sediment supply, alluvial cover, and channel morphology on experimental bedrock incision rate

[1] We explored the dependence of experimental bedrock erosion rate on shear stress, bed load sediment flux, alluvial bed cover, and evolving channel morphology. We isolated these variables experimentally by systematically varying gravel sediment flux Qs and water discharge Qw in a laboratory flume, gradually abrading weak concrete “bedrock.” All else held constant, we found that (1) erosion ra...

متن کامل

A simplified model of thin layer static/flowing dynamics for granular materials with yield

We introduce a simplified model for thin layer flows of granular materials with yield. The model is derived from a Drucker–Prager rheology, and describes the dynamics of the velocity profile and of the transition between static and flowing material. We compare the analytical solution in the inviscid case, and the numerical solution in the viscous case, to experimental data. Although the model d...

متن کامل

Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya

In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10–10 years. Over shorter times, < 10 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated ...

متن کامل

Landslide erosion coupled to tectonics and river incision

The steep topography of mountain landscapes arises from interactions among tectonic rock uplift, valley incision and landslide erosion on hillslopes. Hillslopes in rapidly uplifting landscapes are thought to respond to river incision into bedrock by steepening to a maximum stable or ‘threshold’ angle1–3. Landslide erosion rates are predicted to increase nonlinearly as hillslope angles approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009